

March, 2023 - Release 1.2

Troubleshooting z/OS DevOps

Pipelines

Author:

Nelson Lopez - IBM DevOps Specialist

 Reviewers:

 IBM Z DevOps Acceleration Team

Abstract
This document is meant to help troubleshoot basic zDevOps
issues. The focus is on IBM Dependency Based Build, dbb-

zappbuild Groovy scripts, and UrbanCode Deploy.

An IBM TechDoc from

IBM Z DevOps Acceleration Program

Table of Contents
Introduction .. 3

A Generic zDevOps Architecture ... 3

DBB Groovy Build Scripts - dbb-zappbuild .. 4

Overview of the zDevOps Logs ... 5

Some Common Git Errors ... 6

Log Options for DBB and zAppBuild .. 8

Build.Groovy stdout .. 8

Enabling zAppBuild’s Verbose Logging Mode ... 9

DBB Simple Logging Façade for Java (SLF4J) ... 10

Tracing the Publish Phase ... 11

UCD Application Component Process Log .. 13

UCD Agent Log .. 16

Diagnosing DBB File Allocation Errors (BPXWDYN also called DYNALLOC) .. 17

Tracing a Pipeline .. 19

Conclusion ... 20

Troubleshooting References ... 20

Additional References ... 20

Introduction
This document is meant to help troubleshoot basic zDevOps issues. The focus is on IBM Dependency

Based Build (DBB Version 2), dbb-zappbuild (any version), and UrbanCode Deploy (UCD- version 7 or

higher). While this document does not cover all the possible designs and tools, you may find it useful in

diagnosing problems across other components.

TIP: Always apply the latest version and fixes to your DevOps software stack. Refer to the component’s

documents for more detailed troubleshooting help.

A Generic zDevOps Architecture

Troubleshooting across distributed processes can be complicated. An important step is to understand

the overall architecture and workflow to isolate and resolve issues.

The diagram below is a generic DevOps workflow for z/OS using Git, DBB, Groovy scripts and UCD. The

flow is a CI pipeline build with IBM’s sample build.groovy script (top left). A successful build

produces artifacts that are passed on to an IBM provided sample publishing script called dbb-ucd-

packaging.groovy. This tool reads DBB’s BuildReport.json output to create a UCD shiplist. It

also tars the artifact(s) and invokes the UCD ‘Buztool’ agent interface to publish the tar file in an artifact

repository. A CD pipeline, like UrbanCode Deploy in this case, then runs a process to download the tar,

and deploy the individual artifacts to a target z/OS environment.

Within this flow there are several logs that can help trace and troubleshoot problems. This document

highlights where to find them and how to use them.

https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion

DBB Groovy Build Scripts - dbb-zappbuild
The IBM sample framework, dbb-zappbuild (zAppBuild for short), is composed of several Groovy

scripts that automate the build process. They run on z/OS’s Unix System Service (USS) and invoke DBB

toolkit Java APIs to allocate MVS PDSs, access Git repos and run the MVS compiler, linkeditor (binder)

and other processes. The diagram below highlights the overall framework.

The main process is called by build.groovy and is invoked under the DBB provided groovyz

command to perform User Builds (in IDz or VS Code) and CI pipeline Impact builds. Its main inputs are

command line arguments, property files and source code from Git repo(s). The outputs are build

artifacts like load modules, logs and metadata (called collections in DBB). Metadata is DBB internal

information about an application, it’s dependencies and build results. Depending on the configuration,

metadata can be stored in DB2 or the USS file system.

$DBB_HOME/bin/Groovyz build.groovy \
 --workspace /u/build/repos \

 --application app1 \

 --outDir /u/build/out \

 --hlq BUILD.APP1 \

 --impactBuild

Artifacts &

Metadata

REPO

https://github.com/IBM/dbb-zappbuild
https://www.ibm.com/docs/en/dbb/2.0.0?topic=dependency-based-build-overview
https://www.ibm.com/docs/en/dbb/2.0.0?topic=dependency-based-build-overview
https://www.ibm.com/docs/api/v1/content/SS6T76_2.0.0/javadoc/index.html

Overview of the zDevOps Logs
Each stage of the clone, build, publish and deploy workflow will have a log(s) to help trace and

troubleshoot the process.

build.groovy creates/updates metadata as shown on the left of the image below. The

configuration shown here places these files on the USS file system and not DB2. The buildresults folder

will have information for each build like the buildreport and, when configured, compiler and linkedit

output. These folders are grouped under the applications name followed by the branch that was

processed (such as poc-app-develop) where develop is the branch in this example.

Output artifacts are stored in a working directory as shown on the right side. There, you will find the

build.groovy ‘build.list’ and BuildReport.json which are all the items of a build. The publish

Groovy shiplist.xml and buztool’s buztool.output can also be found in this location. These

files may have helpful information in diagnosing problems. In a successful run, they should all be

present. If one is missing it would indicate some problem with that stage of the process.

Files ending in .log like DATBATCH.cobol.log on the right are compiler and linkedit output

(sysprint) for each program in the build.list. Developers will find them useful when resolving compile or

link issues.

In UCD (bottom right), the server stores the logs for each step of a deploy process. These logs are

accessible from UCD’s UI and provide details on what was deployed and any errors that may have

occurred.

Some Common Git Errors
The first step in any pipeline is cloning a Git repo(s) to USS. There can be many reasons why a clone

may fail. Some common reasons include:

- Security:

o When cloning with SSH, ensure the keys are properly defined.

o When cloning with HTTPS ensure the user/password provided is allowed access to the

repo

- Network:

o Ensure firewall rules and proxy setting, when used, are properly configured to allow the

Rocket Git client on USS to clone from the remote Git Server

- Other:

o Ensure the target USS directory has sufficient free space and permissions to accept the

clone

o Ensure the Rocket Git environment variables are properly configured

Depending on the orchestrator, the Git clone stdout/stderr will provide details on any failure. Below is

an example clone in a GitLab job.

https://www.ibm.com/docs/en/dbb/1.0.0?topic=dbb-setting-up-git-uss

This example shows a failed clone’s log and detailed error message. In this case, the repo name was

mistyped (line 30).

In an Azure DevOps CI pipeline, a failed clone’s log would show similar details (line 25).

Log Options for DBB and zAppBuild

build.groovy stdout
The main zAppBuild build.groovy script’s log is stdout/stderr. It is visible from a command line

invocation as well as from most CI pipelines as shown in the Jenkins example below. The log shows:

- what was built

- the build output location (artifacts)

- the collection name (metadata)

- build result - clean or failed

- number of input files processed

- and other valuable details

Enabling zAppBuild’s Verbose Logging Mode

build.groovy accepts an argument to enable verbose logging. It is the --verbose” or “-v” option.

Refer to the dbb-zappbuild build.groovy readme for more information

https://Github.com/IBM/dbb-zappbuild/blob/main/BUILD.md

The following example shows verbose output of property files loaded, PDS allocations, dependency

resolution rules and much more.

$DBB_HOME/bin/Groovyz build.Groovy \
 --workspace /u/build/repos \

 --application app1 \

 --outDir /u/build/out \

 --verbose \

 --hlq BUILD.APP1 \

 --impactBuild

https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md

DBB Simple Logging Façade for Java (SLF4J)
DBB supports java logging with SLF4J. For details on enabling this level of tracing visit

https://www.ibm.com/docs/en/dbb/2.0.0?topic=customization-logging-framework

By default, this feature is disabled. When enabled it provides detailed information and error codes for

troubleshooting DBB API issues as shown in the example below.

https://www.ibm.com/docs/en/dbb/2.0.0?topic=customization-logging-framework

Tracing the Publish Phase
As explained in the introduction section, a pipeline can include a step to package (tar) and publish

artifacts in UCD. The standard IBM DevOps workflow provides a sample script called dbb-ucd-

packaging.groovy. It produces a log and converts the DBB BuildReport.json output file into a

UCD shiplist. It then calls Buztool, the USS UCD Agent’s main process, which reads the shiplist and calls

the UCD Server to publish the component’s artifacts (tar file). Tar files can be stored in one of these

supported artifact repositories – UCD’s Code Station, Artifactory or Nexus.

The log of an orchestrator like Jenkins will show the publish step’s results.

https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion

In the example below of a failed publish step in Jenkins you can access the step’s log files to get more

details by clicking on the Logs icon shown in the summary error message(s).

Click the message to get more details of the failure. In this case the UCD Component name was not

found in UCD - it was mistyped.

Other common issues during this phase include:

- Missing access rights to UCD, Artifactory or Nexus.

- Network failure due to firewall, proxy settings or other.

- Missing or mis-spelled resource definitions in the artifact server.

- No artifacts passed from DBB. Sometimes DBB Impact mode may not produce an output

artifact. This can be related to corrupt metadata which can be refreshed with a DBB --reset run.

UCD Application Component Process Log
UCD process logs are accessible from the component’s version history page using the ‘view request’ link

as shown below.

From there you can select the ‘View Output Log’ option to review the progress of any step.

The example below shows the “CopyToPDS_ByLLQ” process step’s log. Any error(s) would be displayed

here.

An example failed step would look like this:

Open the step’s log to view more detail. In this case, it seems there is a configuration issue. Refer to the

system programmer to repair or reinstall the agent on USS.

UCD Agent Log
The UCD Agent’s log can be accessed from the UCD web interface.

The first step in diagnosing Agent issues is to ensure the agent’s “MVS Started Task” is active on the

target z/OS environment – the one where artifacts will be deployed. The UCD Resource menu lists all

agents. Use that to review your agent’s status. “Online” (with a green dot)

From that page, when you “Request Logs”, the agent’s logs are extracted and available for viewing.

 Scroll through the log to identify any unusual error messages.

Diagnosing DBB File Allocation Errors (BPXWDYN also called DYNALLOC)
A common error when configuring DBB is with MVS file allocations. The build.groovy log will

display any system related issues when allocating an MVS dataset.

Some common issues are related to invalid DCB parameters. They are defined in the dbb-

zappbuild/build-config files that allocate new PDSs like in cobol.properties or when allocating system

datasets like the cobol compiler in dataset.properties as shown below.

Typically, they are caused by typos in the DCBs, misspelled DSN’s of existing libraries or are related to

some RACF or SMS policies.

As an example, the build.groovy log will show allocation errors as highlighted below.

Looking up an EDC error may not provide much help like the EDC5061I shown below.

As an alternative to EDC error codes, you can look up the secondary error msg - in this case

“errorCode=0x210” as highlighted above. These codes are explained in the following reference

link:

https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-

dynalloc#erc__mjfig7

The 210 error in this case means the PDS being allocated is opened by some other process (enqueue).

Use the above link to help resolve these types of errors. In some cases, the MVS master console may

have additional error codes related to RACF or other system issues. Sometimes, enabling verbose and

log4J may provide more details.

https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-dynalloc#erc__mjfig7
https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-dynalloc#erc__mjfig7

Tracing a Pipeline
The following GitLab CI/CD pipeline illustrates how the logs of various steps can be used to trace

progress and find issues. Most orchestrators highlight failed builds as shown below.

Clicking on the failed job shows the steps and pass/fail status

Clicking the failed step provides more details of the error. In this case it’s a configuration issue with a

testing tool.

Conclusion
This document is meant to provide general tips on troubleshooting basic DBB, dbb-zappbuild and UCD

component process errors. For more difficult issues, refer to the software’s reference manual or open

an IBM Support Case.

Troubleshooting References
The following links may provide more information on troubleshooting DevOps Tools:

- DBB V2 - https://www.ibm.com/support/pages/node/6415115

- Jenkins- https://www.jenkins.io/doc/book/troubleshooting/

- GitLab - https://docs.Gitlab.com/ee/ci/troubleshooting.html

- Azure DevOps - https://learn.microsoft.com/en-

us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops

- UCD CD Processes - https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-

troubleshooting-processes

Additional References
For more information on Z DevOps and how to receive support in the early parts of your transformation

journey, visit

https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/devops-acceleration-

program.html

https://www.ibm.com/support/pages/node/6415115
https://www.jenkins.io/doc/book/troubleshooting/
https://docs.gitlab.com/ee/ci/troubleshooting.html
https://learn.microsoft.com/en-us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops
https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-troubleshooting-processes
https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-troubleshooting-processes
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/devops-acceleration-program.html
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/devops-acceleration-program.html

