An IBM TechDoc from
March, 2023 - Release 1.2

IBM Z DevOps Acceleration Program

Troubleshooting z/OS DevOps
Pipelines

Author:
Nelson Lopez - IBM DevOps Specialist

Reviewers:
IBM Z DevOps Acceleration Team

Abstract

This document is meant to help troubleshoot basic zDevOps
issues. The focus is on IBM Dependency Based Build, dbb-
zappbuild Groovy scripts, and UrbanCode Deploy.

Table of Contents

T o o [V Tt d o] o WU PSP PP PP PRTPPPTOPPRTOR 3
A GENETIC ZDEVOPS ArCNITECTUI . ..ciiiiiee ettt et e et e e e et e e e ebte e e e sbteeeesbtseeesstaeeesnssaeaesanes 3
DBB Groovy Build Scripts - dbb-zappbuildc.ueiiiiiieeeee e 4
OVErVIEW Of the ZDEVOPS LOES .veiiiiuiiiiiiiiiiie ittt e eettee ettt e s sttt e e st e e s seabee e e ssabeee s ssabeeeeesnbeeeesnsseeeeensseeesssnsens 5
SOME COMMON GIt EFTOIS .eeiiiiieee ettt ettt e e et e e st e e e s mre e e s s mre e e s e snne e e e sanneeeeesnneneeennrenas 6
Log Options for DBB and ZAPPBUII........ooi ittt e et e e et a e e e s atr e e e enaeaeeesennreeeean 8

2TV Fo B CT o o 1Y ARy o oYU L AR SRR 8

Enabling zAppBuild’s Verbose LOgEIiNg IMOE........ccoocuiiiiiiiiii ettt ereee e e e e 9

DBB Simple Logging Fagade fOr Java (SLFA)e ettt et ste e et e st e e sat e e e rne e 10
Tracing the PUDIISN PRESEciiiiiie ettt e e et e e e s abe e e e s abee e s esnbeeeeenreeas 11
UCD Application COMPONENT ProCESS LOGuvieiiuiieieiiieieeiiieeeeeiteeeesiteeeeeittee e e eateeesenbeeesesasesesennseeesensenas 13
L8 @DY (=T o | A o T~ S PPPRE 16
Diagnosing DBB File Allocation Errors (BPXWDYN also called DYNALLOC)ccceevvieeeciieeciee e eciee e 17
R Lo =4 T T =] 1T =TSP 19
CONCIUSTON ...ttt ettt b e bt e bt s at e et e et e e bt e sbeesatesabeeab e e b e e beesbeesaeeeabeebeenbeesbeesanenas 20

TroubleShOOtING RETEIENCES ... vttt e e et e e s e bte e e e e bteeeeentaeeesantaeeeeanes 20

FiNo [[Te Yo = LI A T=Y (=] (= o Lol IO U O PO T TR 20

Introduction

This document is meant to help troubleshoot basic zDevOps issues. The focus is on IBM Dependency
Based Build (DBB Version 2), dbb-zappbuild (any version), and UrbanCode Deploy (UCD- version 7 or
higher). While this document does not cover all the possible designs and tools, you may find it useful in
diagnosing problems across other components.

TIP: Always apply the latest version and fixes to your DevOps software stack. Refer to the component’s
documents for more detailed troubleshooting help.

A Generic zDevOps Architecture

Troubleshooting across distributed processes can be complicated. An important step is to understand
the overall architecture and workflow to isolate and resolve issues.

The diagram below is a generic DevOps workflow for z/OS using Git, DBB, Groovy scripts and UCD. The
flow is a Cl pipeline build with IBM’s sample build. groovy script (top left). A successful build
produces artifacts that are passed on to an IBM provided sample publishing script called dbb-ucd-
packaging.groovy. This tool reads DBB’s BuildReport. json output to create a UCD shiplist. It
also tars the artifact(s) and invokes the UCD ‘Buztool’ agent interface to publish the tar file in an artifact
repository. A CD pipeline, like UrbanCode Deploy in this case, then runs a process to download the tar,
and deploy the individual artifacts to a target z/OS environment.

Within this flow there are several logs that can help trace and troubleshoot problems. This document
highlights where to find them and how to use them.

DBB/UCD — Build, Publish, Deploy flow

Artifact Repo Supported Artifact Repos

TAR—=mmm TARFILE S8 ucb = NeXUS O
= TARFILE TARene Code == et
DBB AR TARFILE Station

Build.groovy

Load1, dbrm... u rba n {Code}

SR artinels ———-
artifacts Application Meta
Data

jul BuzTool.sh
dbb-ucd-packaging.groovy Publish & Version

Publish

SLPAR=xyz
CICS — COPY LOAD
BATCH/CICS — COPY LOAD
DB2 BIND DBRM

i i Continuous Delivery/Deployment
Continuous Integration ry/Deploy NEWehPY.

https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion

DBB Groovy Build Scripts - dbb-zappbuild

The IBM sample framework, dbb-zappbuild (zAppBuild for short), is composed of several Groovy
scripts that automate the build process. They run on z/0S’s Unix System Service (USS) and invoke DBB
toolkit Java APIs to allocate MVS PDSs, access Git repos and run the MVS compiler, linkeditor (binder)
and other processes. The diagram below highlights the overall framework.

The main process is called by build. groovy and is invoked under the DBB provided groovyz
command to perform User Builds (in IDz or VS Code) and Cl pipeline Impact builds. Its main inputs are
command line arguments, property files and source code from Git repo(s). The outputs are build
artifacts like load modules, logs and metadata (called collections in DBB). Metadata is DBB internal
information about an application, it's dependencies and build results. Depending on the configuration,
metadata can be stored in DB2 or the USS file system.

$DBB_HOME/bin/Groovyz build.groovy \
--workspace /u/build/repos \
--application appl \
--outDir /u/build/out \
--hlg BUILD.APP1 \
--impactBuild

zAppBuild Design

Properties Scripts

Entry Point Language Scripts
Application Enterprise

Cobol.groovy
level level . o
— build.groovy S
application-conf 2AppBuild ~+ assembler.groovy
w) ACBgen.properties it
) application.properties application pli.groovy

A build-conf
w| Assembler.properties

m] ACBgen.properties DBB Toolkit
&) Assembler.properties APls

m) BMS.properties
&) Cobol.properties ®] build.properties
w] DBDgen.properties @] Cobol.properties
wr) file.properties W] datasets.properties
&) LinkEdit.properties @) DBDgen.properties
m] LinkEdit.properties
®] MFS.properties
.| Pliproperties

) bind.properties
w) BMS.properties

) MFS.properties
w) Pll.properties

) PSBgen.properti . —
'_) gen-properies ®) PSBgen.properties Artifacts &
L Metadata

https://github.com/IBM/dbb-zappbuild
https://www.ibm.com/docs/en/dbb/2.0.0?topic=dependency-based-build-overview
https://www.ibm.com/docs/en/dbb/2.0.0?topic=dependency-based-build-overview
https://www.ibm.com/docs/api/v1/content/SS6T76_2.0.0/javadoc/index.html

Overview of the zDevOps Logs

Each stage of the clone, build, publish and deploy workflow will have a log(s) to help trace and
troubleshoot the process.

build.groovy creates/updates metadata as shown on the left of the image below. The
configuration shown here places these files on the USS file system and not DB2. The buildresults folder
will have information for each build like the buildreport and, when configured, compiler and linkedit
output. These folders are grouped under the applications name followed by the branch that was
processed (such as poc-app-develop) where develop is the branch in this example.

Output artifacts are stored in a working directory as shown on the right side. There, you will find the
build.groovy ‘build.list’ and BuildReport. json which are all the items of a build. The publish
Groovy shiplist.xml and buztool’s buztool . output can also be found in this location. These
files may have helpful information in diagnosing problems. In a successful run, they should all be
present. If one is missing it would indicate some problem with that stage of the process.

Files ending in .log like DATBATCH. cobol. 1og on the right are compiler and linkedit output
(sysprint) for each program in the build.list. Developers will find them useful when resolving compile or
link issues.

In UCD (bottom right), the server stores the logs for each step of a deploy process. These logs are
accessible from UCD’s Ul and provide details on what was deployed and any errors that may have
occurred.

DBB/UCD — Build, Publish, Deploy Logs

build.groovy

;ﬁﬂzmoteSyﬁems X
~ (& jenkins-agent
caches
remoting
& workspace
v [poc-demo_develop

collectionjson v [poc-workspace
lagicalfiles json

v @ collections

referencesjson git
v & poc-app-develop-outputs .github
v poc-app

gitattributes
gitignore

&) buildListtxt
BuildReporthtml
BuildReportjson
buztool.output Buztool
DATBATCH.cobol.log
Jenkinsfile

Publish.groovy shiplistxm
urban{code}

Component
Linux Server process logs

Some Common Git Errors

The first step in any pipeline is cloning a Git repo(s) to USS. There can be many reasons why a clone
may fail. Some common reasons include:

- Security:
o When cloning with SSH, ensure the keys are properly defined.
o When cloning with HTTPS ensure the user/password provided is allowed access to the
repo
- Network:
o Ensure firewall rules and proxy setting, when used, are properly configured to allow the
Rocket Git client on USS to clone from the remote Git Server
- Other:
o Ensure the target USS directory has sufficient free space and permissions to accept the
clone
o Ensure the Rocket Git environment variables are properly configured

Depending on the orchestrator, the Git clone stdout/stderr will provide details on any failure. Below is
an example clone in a GitLab job.

~

GL-poc-workspace

]
B Re
o
13 Merge =5 $ echo workDi
workDir created /u/ibmuser/tmp/GL/CI-Runner-778701876
@ cuco criptsHone/CI/Clone2.sh $workDir § s
T ——
Started: Clone2.sh on HOST/USER: z/0S VSO1 04.00 82 8562/IBNUSER
Repo Url: git@gitlab.com:nlopez59/6L-poc-workspace.git
Jobs . Repo Ref: develop
workSpace: 6L-poc-workspace
WorkDir (pwd): /u/ibmuser/tmp/GL/CI-Runner-778761876
6it Cmd: git clone -b develop git@gitlab.com:nlopez59/GL-poc-workspace.git
o Git Version: git version 2.14.4_zos_b8
a /u/ibmuser/tmp/6L/CI-Runnenr-778701876
@ Cloning into 'GL-poc-workspace'...

GitLog

» 5803148 (HEAD -> develop, origin/develop, origin/HEAD) test 11:17
* 4fcOd75 tweak jcl unit test job stem.

* 9F726f4 DATBATCH Feature Test v4.2

x 0O rF g

https://www.ibm.com/docs/en/dbb/1.0.0?topic=dbb-setting-up-git-uss

This example shows a failed clone’s log and detailed error message. In this case, the repo name was
mistyped (line 30).

-

GL-poc-workspace)

o Kbk
4 Merge requests . Started: Clone2.sh on HO: VS01 84.00 02 BS62/IBMUSER
) Repo Url: git@gitlab.BREAK.com:nlopezS9/6L-poc-workspace.git
& cicop Repo Ref: develop
elines o ace: GL-poc-workspace
—_— YorkDir (pwd): /u/ibmuser/tmp/GL/CI-Runner-792781879
: git clone -b develop git@gitlab.BREAK.com:nlopez59/6L-poc-workspac
Jobs

it Version: git version 2.14.4_zos_be8

9

/u/ibmuser/tmp/6L/CI-Runner-792781079

=20 . Cloning into "BL-poc-workspace®.
o : Could nat resolve hostname gitlab.break.com: EOC9SG1I The name does not resolve for the supplied parameters.
a pa fatal: Could not read from remote repository.
& Please make sure you have the correct access rights
and the repository exists.

@ u
ke oA Gitlog

. fatal: Not a git repository (or any parent up to mount point fu)
2T EM not set).
X s

Azure-Repo-DBB AzDBB Pipelines Cl Demo - poc-workspace i

& Jobs in run #2291 % Clone to z/OS
CI Demo - poc-workspace in
GitHub.Com

View raw log

https://docs.microsoft. com/azure/devops pelines/tasks/deploy/ssh

Trying to establish an SSH connection to ***@mywazi:
Vv % Continuous Integr... Successfully connected.
clone the nt branch to USS/z05
Initialize job < 12 /u/ibmuser/wazibgs/dbb-v2/dbb-zappbuild/scripts/CI/Clone.sh ~/CI-PIPELINES-WorkDir/ 2291 poc-workspace git@github.com:nlopezi-ibm/
Checkout nlopez Started: Clone.sh on HOST/USER: z/0S VS@1 ©4.00 02 8562/%**
Repo: git@github.com:nlopez1-ibm/poc-workspace.git-BRI
[Clone to z/OS] Ref: develop
workDir (pwd): /u/ibmuser/CI-PIPELINES-WorkDir/AzDBB_2291
DBB Build WorkSpace: poc-workspace

Post-job: Check... Git version: git version 2.14.4 _zos_bes

Finalize Job
Cloning into ‘poc-workspace.git-BREAK'...

ERROR: Repository not found.
fatal: Could not read from remote repository.
Please make sure you have the correct access rights

and the repository exists.

Finishing

Log Options for DBB and zAppBuild

build.groovy stdout

The main zAppBuild build. groovy script’s log is stdout/stderr. It is visible from a command line
invocation as well as from most Cl pipelines as shown in the Jenkins example below. The log shows:

- what was built

- the build output location (artifacts)
- the collection name (metadata)

- build result - clean or failed

- number of input files processed

- and other valuable details

** Build-v2 start at 20230227.022755.027

** Build output located at /u/ibmuser/jenkins-agent/workspace/poc-demo_develop/poc-workspace
* Build result created for BuildGroup:poc-app-develop Buildlabel:build.28238227.822755.827
** Adding poc-app/cobol/datbatch.cbl to Building build list

** Writing build list file to /u/ibmuser/jenkins-agent/workspace/poc-demo_develop/poc-workspace/buildList.txt

** Scanning source code.

WARNING: An illegal reflective access operation has occurred

WARNING: Illegal reflective access by org.codehaus.groovy.vmplugin.v8.Javag (file:/u/ibmuser/waziDBB/groovy/lib/grocvy-4.0.3.jar) to method
sun.nio.fs.UnixFileSystem.getPathMatcher(java.lang.String)

WARNING: Please consider reporting this to the maintainers of org.codehaus.groovy.vmplugin.vg.Javad

WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations

WARNING: All illegal access operations will be denied in a future release

** populating file level properties from individual property files.

** Invoking build scripts according to build order: BMS.groovy,MFS.groovy,Cobol.groovy,Assembler.groovy,PLI.groovy,LinkEdit.groovy,DBDgen.groovy,PSBgen.groovy,Transfer.groovy
** Building files mapped to Cobol.groovy script

*++ guilding (CG V2) file poc-app/cobol/datbatch.cbl

** Writing build report data to /u/ibmuser/jenkins-agent/workspace/poc-demo_develop/poc-workspace/BuildReport.json

** Writing build report to /u/ibmuser/jenkins-agent/workspace/poc-demo_develop/poc-workspace/BuildReport.html

** Updating build result BuildGroup:poc-app-develop BuildLabel:build.20230227.022755.827

** Build ended at Mon Feb 27 14:28:01 EST 2023

** Build State : CLEAN

** Total files processed : 1

** Total build

time : 5.921 seconds

Enabling zAppBuild’s Verbose Logging Mode

build.groovy acceptsanargument to enable verbose logging. It is the --verbose” or “-v” option.
Refer to the dbb-zappbuild build.groovy readme for more information
https://Github.com/IBM/dbb-zappbuild/blob/main/BUILD.md

workspace)

The following example shows verbose output of property files loaded, PDS allocations, dependency
resolution rules and much more.

$DBB_HOME/bin/Groovyz build.Groovy \
--workspace /u/build/repos \
--application appl \
--outDir /u/build/out \
--verbose \
--hlg BUILD.APP1 \
--impactBuild

https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md

DBB Simple Logging Facade for Java (SLF4)J)
DBB supports java logging with SLF4J). For details on enabling this level of tracing visit
https://www.ibm.com/docs/en/dbb/2.0.0?topic=customization-logging-framework

Documentation

Il products / 1BM Dependency Based Build / 2.0.0 / Change version hd . [| e
Was this topic helpful? | Yes No @

Configuring the logging framework

Last Updated: 2022-12-02

You must configure the logging framework to specify how to gather the DBB debug information.

Beginning in DBB V2.0.0, the DBB toolkit uses the Simple Logging Facade for Java (SLF4J), which provides an abstraction layer enabling you to
choose the logging framework (see "Changing logging frameworks" below). By default, DBB uses the SLF4J provided Simple Logger.

Configuring the SLF4J Simple Logger

By default, this feature is disabled. When enabled it provides detailed information and error codes for
troubleshooting DBB API issues as shown in the example below.

internal.Utils [main] bpxwdyn:

ernal.utils [main] bpxwd

1.internal.utils [main] bpxwdyn: alloc dd(

internal.utils

https://www.ibm.com/docs/en/dbb/2.0.0?topic=customization-logging-framework

Tracing the Publish Phase

As explained in the introduction section, a pipeline can include a step to package (tar) and publish
artifacts in UCD. The standard IBM DevOps workflow provides a sample script called dbb-ucd-
packaging.groovy. It produces a log and converts the DBB BuildRepoxrt. json output file into a
UCD shiplist. It then calls Buztool, the USS UCD Agent’s main process, which reads the shiplist and calls
the UCD Server to publish the component’s artifacts (tar file). Tar files can be stored in one of these
supported artifact repositories — UCD’s Code Station, Artifactory or Nexus.

A Remote Systems ©’
v & jenkins-agent
caches
remoting
& workspace
v & poc-demo_develop
v & poc-workspace
git
github
poc-app
Qgitattributes
gitignore
&) buildList.txt
BuildReporthtm!
BuildReportjson
buztool.output Buztool
DATBATCH.cobol.log
Jenkinsfile

Publish.groovy shiplistml

The log of an orchestrator like Jenkins will show the publish step’s results.

im} Q poc-demo » develop #22 Conso. X | =+ - [u] X

& C @ localhost:8080/job/poc-demo/job/develoy

+ groovyz /u/ibmuser/waziDeB/dbb-v2/dbb-zappbuild/scripts/uc/dbb-ucd-packaging.groovy --buztool /u/ibmuser/ibm-ucd/agent/bin/buztool.sh --workDir /u/ibmuse

agent/workspace/poc-demo_develop/poc-workspace - -component poc-component --versioniame 22

2- Create version start at 20230227.022811.028

Properties at startup:
preview -> false

component -> poc-component

buztoolPath -> /u/ibmuser/ibm-ucd/agent/bin/buztool.sh

startTise -> 20230227.022811.028

workDir -> /u/ibmuser/jenkins-agent /workspace/poc-demo_develop/poc-workspace
versiontiame -> 22

** Read build report data from /u/ibmuser/jenkins-agent/workspace/poc-deso_develop/poc-workspace/BuildReport . Json

088 To

** Generate UCD ship 1i
** write ship list file t

lop/poc-workspace/shiplist.xml

fon - poc-component -s /u/ibmuser/jenkins-agent/workspace/poc-demo_develop/poc-workspace/shiplist.xel

1.output -v 22
** Create version by running UCD
WIL - TRACE buztoco.sh java home= /usr/lpp/java/javas/current

205 toolkit config gent/ (7.2.1,0,20211011-0758)
205 toolkit binary bmuser/ibm-ucd/agent/ (7.2.1.8,20211011-0758)

fu/ ibmuser/ibm-uc

205 toolkit data set : BUZ (7.2.1.9,20211011-0758)

Share this window

zosversion

... .Component : poc-companent

https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion

In the example below of a failed publish step in Jenkins you can access the step’s log files to get more
details by clicking on the Logs icon shown in the summary error message(s).

f Jenkins a
Dashboard poc-demo > develop
B staws Pipeline develop
<[> Changes N
Full project name: poc-demo/develop
(> Build Now
Stage View Failed with the following error(s)

3} View Configuration

Q Full stage View Clone

(@ ripeline Syntax Average stag

Average full run time: ~

&5 Build History trend

Q Filter builds

. w2 Share this window |

Click the message to get more details of the failure. In this case the UCD Component name was not
found in UCD - it was mistyped.

Stage Logs (Publish) *
l

(G}
Feb 27,2023, 226 PM @
| fo Fap 2 RGN Ty . a

Other common issues during this phase include:

- Missing access rights to UCD, Artifactory or Nexus.

- Network failure due to firewall, proxy settings or other.

- Missing or mis-spelled resource definitions in the artifact server.

- No artifacts passed from DBB. Sometimes DBB Impact mode may not produce an output
artifact. This can be related to corrupt metadata which can be refreshed with a DBB --reset run.

UCD Application Component Process Log

UCD process logs are accessible from the component’s version history page using the ‘view request’ link
as shown below.

UrbanCode Deploy Dashboard Applications Configuration Calendar More v @ O admin
Components / poc-component | Versions J Version: 22
Message of the Day .
nelson-ucd-server-vsi @ 163.107.87.79:8080 agent vsi @ 163.109.95.188 :

Version: 22

Created By admin Links © Create
Created On 2/27/2023, 2:27 PM
\ N Mo links found.
Repository Type CodeStation
View all links
Main Configuration History
Process Resource Application Environment Scheduled For & By Status

cics ple / nlopez-terra-demo-

ironment- 2/27/2023, 2:27 admin
PM

View Request

liems perpage: 10 ¥ | 1-lof Liten lofipages € Previous 1

Refresh

From there you can select the ‘View Output Log’ option to review the progress of any step.

Execution Log v

Expand All Collapse All Download Al

Step = Progress Start Time Duration Status =
1.7, Download Artifacts 2:27:52 PM 0:00:09 @ Success
2.{0) genArtifactLists 2:27:52 PM 0:00:08 @ Success :

3. (¥ copyToPDS_BylLQ 2:28:01 PM 0:00:09 @ Success

4. [}, isNewCopy 2:28:10 PM 0:00:00 @ Success

5.], isbB2 2:28:10 PM 0:00:00 @ Success .
6. (') SubmitDB2BindJCL @ Not Started
7. RunNewCopy(s) @ Not Started

3/5

Total Execution 2:27:52 PM 0:00:18 . Success

The example below shows the “CopyToPDS_ByLLQ” process step’s log. Any error(s) would be displayed
here.

Output Log

Working Directory /u/ibmuser/ibm-ucd/agent/var/work//poc-component

Restore Mapping File . /u/ibmusor/ibm ucd/agent/var/work/poc - component /1843e55a- 5fcb-9a7c-6414- ed3a88c66cea/ 22/ containertapper . xml
IBHUSER. JENKINS LOAD.

BUZERO9121: Y]wl"g menmers 10 ZDEV.MAIN.LOAD

IEBCOPY control statement

COPYGROUP OUTOO=0UTOD, INDD=((INDD, R))

SELECT MEMBER=DATBATCH

Elapsed time for data set package or deploy operation : 0.378997

postDeploy:

D(‘vloy('d Artifacts:
fxml versions"1.0"?>
u-annost timeZone="America/New_York" types" »wu:ssr LIST">
<container name="IBMUSER. JENKINS,LOAD" type="p
<resource name="DATBATCH" deployType="LOAD" lypc "poSHember”>
<property name="buildcommand” value uum 1K"/>
<property name: huxldu tions” value="MAP,RENT,COMPAT (PH:
<property name="githash" value="| 1)97)[be‘/dldﬂsdbﬂd1Ibfﬁd(dl‘la(}obddlbbﬂﬂl“/)
<property name="3vs,id.ModuleBound" value="2023058152800"/
<property names"sys.id.Modulesize" values5736">
</resource>
</container>
</manifest>

store deploy result

opy] Copying 1°File to /u/ibmuser/ibn ucd/agent/var/deploy/deploy/1843e55a-5fcb-9a7c-6414- €03aB8C66¢ea/poc - companent

mpy Copying /u/ihousm/un u(d/a;cnt/var{mrk/po(component /1843e55a-5fcb-9a7¢-6414 Dolasamuzm\/u/ua(kageﬂ.\ui(est x-l to /u/ibmuser/ibm-ucd/agent/va
copy] Copying 1 file to /u/ibmuser/ibm-ucd/agent/var/deploy/deploy/1843e55a-5fcb-9a7¢-6414-203a88c66cea/poc - component /22

copy] Copying /u/ibmuser/ibm-ucd/agent/var/work/poc-component/1843e55a-5fcb-9a7¢ -6414-003a88c66Cea/ 22/ containerMapper . x-l to /u/ibmuser/ibm-ucd/agent/va _

An example failed step would look like this:

Components | poc-component [Process Request on poc-component

Message of the Day .
nelson-ucd-server-vel @ 163.107.87.79:8080 agent vsi @ 163.109.95.188 -

Deployment of Component: poc-companent

Process 205 Deploy with support for
CICS and DB2 artifacts (Version

19)
Version 757323236
Resource poc-component
Agent nlopez-terra-demo-vsil
Date 1/25/2023, 8:37 AM
Requested By admin
Log Properties
xecution Log ~
Expand All - Collapse All Down
Step = Progress Start Time 3 Duration Status 5
1..%, Download Artifacts 8:37:17 AM 0:00:13 @ Success :
2. () genArtifactlists 8:37:17 AM 0:00:09 @ Success :
3. () copyToPDS_ByLLQ 8:37:29 AM 0:00:08 @ Failed :

4.}, isNewCopy

@ Not Started

Open the step’s log to view more detail. In this case, it seems there is a configuration issue. Refer to the
system programmer to repair or reinstall the agent on USS.

Output Log

Working Directory /u/ibmuser/ibm-ucd/agent/var/work//poc-component

LIBPATH: /usr/lpp/java/]8.0_64/1ib/s390%/compressedrefs:/usr/lpp/java/18.8_64/1ib/s39@x/j9vm: /usr/lpp/java/18.0_64/1ib/s398x: fusr/lpp/java/I8.0_64/../1ib/s390x
/usr/lpp/java/18.0_64/bin/java -Dfile.encoding=IBM-1047 -Dconsole.encoding=IBM-1847 -Xmx128m -cp /u/ibmuser/ibm-ucd/agent/opt/apache-ant-1.10.11/1ib/ant.jar:/L

Checking for DUMMY pds Mappings:

The containerMapper.xml contents:
<?xml version="1.8" encoding="IBM-1047"2><maps>
<map type="PDS">
<sourceContainer name
<targetContainer name
</map>
</maps>»
[copy] Copying 1 file to /u/ibmuser/ibm-ucd/agent/var/work/poc-component/1843e55a-5fcb-9a7c-6414-e03aB8c66cea/ 757323236
[copy] Copying /u/ibmuser/ibm-ucd/agent/var/work/poc-component/1843e55a-5Fcb-9a7c-6414-e@3a88c66cea 757323236/ packageManifest_deploy.xml to fufibmuser/ibn

BMUSER.PIPELINE.LOAD" />
DEV.MAIN.LOAD" />

PreDeploy:
Creating directory:/ufibmuser/ibm-ucd/sgent/var/deploy/deploy/1843e55a-5fcb-Sa7c-6414-eB3a88c66cea/poc-component /757323236

Backup:
Backup is skipped.

Deploy:

Deploy data sets:
6 +++ say NIL TRACE BUZ.SBUZEXEC(BUZDEPZP)
IRX@@43I Error running BUZDEPZP, line 6: Routine not found
1SPD117
The initially invoked CLIST ended with a return code = 20043
The deployment failed to complete. Look at the CDATA section in previous messages for the failure reason. Check for REASON-CODE entries if they exist.

Plugin Execution completed at: 2023-01-25T13:38:04.189Z

Post Process completed at: 2023-81-25T13:38:04.2127

UCD Agent Log

The UCD Agent’s log can be accessed from the UCD web interface.

The first step in diagnosing Agent issues is to ensure the agent’s “MVS Started Task” is active on the
target z/0S environment — the one where artifacts will be deployed. The UCD Resource menu lists all
agents. Use that to review your agent’s status. “Online” (with a green dot)

nits | nlopez-terrasdemonysi

Message of the Day
nelsan-ucd-sarvervsi @ 163,107.67.79:8080

Version
Status

muserfibm-ucdfagent/bin/agent run
< fdewjnull &

Main Configuration Logs Metadata

Available Logs

From that page, when you “Request Logs”, the agent’s logs are extracted and available for viewing.

UrbanCode Deploy D o Applications Configuration Frocesses

lopez-terma-demo-vsil
Message of the Day

nelson-ucd-server-vsi © 163.107.87.79:8080 agent vsi @ 163.109.95.188

Agent: nlopez-terra-demo-vsil
Version 7.212.1127228 Description
Status @ Online

Main Configuration Logs Metadata
mvaiable Logs
LogFile = Date Stz 3

o 3112023, 8:49 AM 2205KB

Scroll through the log to identify any unusual error messages.

agent.out

Diagnosing DBB File Allocation Errors (BPXWDYN also called DYNALLOC)

A common error when configuring DBB is with MVS file allocations. The build. groovy log will
display any system related issues when allocating an MVS dataset.

Some common issues are related to invalid DCB parameters. They are defined in the dbb-
zappbuild/build-config files that allocate new PDSs like in cobol.properties or when allocating system
datasets like the cobol compiler in dataset.properties as shown below.

Typically, they are caused by typos in the DCBs, misspelled DSN’s of existing libraries or are related to
some RACF or SMS policies.

& Remote Systems

As an example, the build. groovy log will show allocation errors as highlighted below.

Looking up an EDC error may not provide much help like the EDC5061I shown below.

IEM Documentation

EDC50611I An error occurred when attempting to define a file to the
system.

Explanation
The fopen ()/freopen () function o the Temov
System action

Programmer response

we structure for more informat

As an alternative to EDC error codes, you can look up the secondary error msg - in this case

"errorCode=0x210" as highlighted above. These codes are explained in the following reference
link:

https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-
dynalloctterc mijfig7

The 210 error in this case means the PDS being allocated is opened by some other process (enqueue).

Documentation “enrcl 3.0 - 2/0S MVS Programming; Authorized Assembler i a x 2

2/0S ¢ All products

Change version Interpreting error reason codes from DYNALLOC

230 -

&\‘as'msmunhs:iul"‘ Yes g | |Nu (7] ‘

Last Updated: 2021-03-03

When the DYNALLOC macro routines return a nonzero return code in register 15, the request block field labelled S99ERROR contains a code that

|B show full table of contents .
explains the reason for the error,

¥ Filter on titles Corresponding messages listed for any error reason code are issued or returned based on the message processing options specified by the dynamic —
allocation caller. Se Processing messages and reascn codes from dynamic allocation for more information about the hanclling of dynamic allocation X
Accessing unit control blocks . - messages.
(UCBs) o
Error reason codes are divided into the following classes:
Dynamic allocation - -
Requesting dynamic allocation ~ Class
functions Description
Building the SVC 99 parameter 1
list Used for internal diagnostic purposes only. Record this code and supply it to the appropriate IBM® support personnel.
Processing messages and ~ 2
reason codes from dynamic Unavailable system resource
allocation 3
Interpreting DYNALLOC return ~ Invalid parameter list
codes
4
Interpreting information Environmental error
reason codes from DYNALLOC s
Interpreting arror reason Used for internal diagnostic purposes only. Record this code and supply it to the appropriate 18M support personnel.
e R . g purp y pply pprop pport pi
SVC 99 parameter list verb ¥ Used for internal diagnostic purposes only. Record this code and supply it to the appropriate 18M support personnel.
codes and text units, by function 7

Example of a Dynamic Allocation
Request

System routine error

Meaning: Requested data set unavailable. The data set is allocated to another job and its usage attribute conflicts with
z/0s this request. (dsname allocation)?
0210 (528) Application programmer action: Change the allocation request and resubmit the request.
Ehange ysrsion Corresponding message: IKJ562251
230 v Meaning: Device(s) not available; or,if allocating an internal reader, al defined internal readers are already allocated.
(dsname allocation)!
Application programmer action: Ensure that the device collections of the specified device can supply the required

B show full table of contents number of devices. If necessary, change the device specification. Resubmit the request.

Use the above link to help resolve these types of errors. In some cases, the MVS master console may
have additional error codes related to RACF or other system issues. Sometimes, enabling verbose and
log4) may provide more details.

https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-dynalloc#erc__mjfig7
https://www.ibm.com/docs/en/zos/2.3.0?topic=codes-interpreting-error-reason-from-dynalloc#erc__mjfig7

Tracing a Pipeline
The following GitLab CI/CD pipeline illustrates how the logs of various steps can be used to trace
progress and find issues. Most orchestrators highlight failed builds as shown below.

[® faited

e ol
@ Project information
B Repository
O lssues 0 AN & v
1% Merge requests 0
7@ cljcb

Pipelines all tests passed gl-runner reconfi DTN .

331354 §° develop <o 6e2

Editor

Jobs

Schedules trace runner on ibmPC HeH N &y v

@ Security & Compliance

Clicking on the failed job shows the steps and pass/fail status

o e = B I - & @&

G GL-poc-workspace nelsan lopez » GL-poc-works o #757840222

Q Project informatior - ["etete |
@ fallet | Pipeline #757840222 wiggered 1 month ago by &5 nelson lopez [ey [

B Repository - :

1]

Issues o unit test 3.2

& clco @ 4jobs for develop in 2 minute:

Pipelines
o &

Editor

Jobs

13 Mo related merge reguests found.

we Pipeline MNeeds Jobs Failed Jobs 1 Tests &
@ D
a Groupjobs by Stage | Job cependancies | - Show dependencies G
®
@ M
(3 clane_job ~ () build_joh (3) publish_jeb .
™ v ature cronges (& [OF £ © " .

u

Clicking the failed step provides more details of the error. In this case it’s a configuration issue with a
testing tool.

o = ! N
G GL-poc-workspace nelsc P 3L-pe orkspa Dl #3662050757 :
' test_job
(1 Project information _—
[® failed | Job test_job triggered 1 month ago by nelson lopez
B Rep dew i
¥ Issues 0 al®@ @ =

Duration: 10 seconds
Running with gitlab-runner 15.5.8 (B8d4137b8) Finished: 1 month ago

13 Merge requests

@ cuco on myrunner yiESRbwy
Pipelines @
Editor Runner: #1855
myrunner
Jobs
Schedules
skipping Git re
@ Security & Compliance (L= 5
ipping Git checkout
() Deployments
] t £ the jo ipt (®) Pipeline #757840222 for develap
(3 Packages and registries ¢ - = < P4
~ bash: line 136: /batchTest.rexx: EDC51291 No such file or directory. “
frastructure
@ Infrastructure atehT < Contin v
@@ Monitor ning up project directory and file ba
i Analytics

- @ test_job

Conclusion

This document is meant to provide general tips on troubleshooting basic DBB, dbb-zappbuild and UCD
component process errors. For more difficult issues, refer to the software’s reference manual or open
an IBM Support Case.

Troubleshooting References
The following links may provide more information on troubleshooting DevOps Tools:

- DBBV2 - https://www.ibm.com/support/pages/node/6415115

- Jenkins- https://www.jenkins.io/doc/book/troubleshooting/

- GitlLab - https://docs.Gitlab.com/ee/ci/troubleshooting.html

- Azure DevOps - https://learn.microsoft.com/en-
us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops

- UCD CD Processes - https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-
troubleshooting-processes

Additional References

For more information on Z DevOps and how to receive support in the early parts of your transformation
journey, visit

https://ibm.github.io/mainframe-downloads/DevOps Acceleration Program/devops-acceleration-
program.htmil

DevOps Acceleration Program

Start your DevOps Transformation Journey

https://www.ibm.com/support/pages/node/6415115
https://www.jenkins.io/doc/book/troubleshooting/
https://docs.gitlab.com/ee/ci/troubleshooting.html
https://learn.microsoft.com/en-us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/troubleshooting/troubleshooting?view=azure-devops
https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-troubleshooting-processes
https://www.ibm.com/docs/en/urbancode-deploy/7.1.1?topic=agents-troubleshooting-processes
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/devops-acceleration-program.html
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/devops-acceleration-program.html

